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Abstract
We report a theoretical study of the influence of the Coulomb interaction on
the equilibrium spin current in a quantum-dot spin valve, in which the quantum
dot described by the Anderson impurity model is coupled to two ferromagnetic
leads with noncollinear magnetizations. In the Kondo regime, electrons transmit
through the quantum dot via higher-order virtual processes, in which the spin of
either lead electrons or a localized electron on the quantum dot may reverse. It is
found that the magnitude of the spin current decreases with increasing Coulomb
interactions due to spin flip effects on the dot. However, the spatial direction
of the spin current remains unchanged; it is determined only by the exchange
coupling between two noncollinear magnetizations.

Spin polarized electron transport in microstructures has been one of the most active research
fields in recent years not only because it is a fundamental problem in condensed matter physics,
but also because it has potential applications in future spin devices such as spin valve transistors,
spin selective electron interferometers, and nonvolatile random access memory [1–3]. A
prominent example is the spin valve device based on the tunnelling magnetoresistance
(TMR) in magnetic tunnel junctions [4]. The tunnelling conductance for moments of two
ferromagnetic metallic (FM) electrodes aligned parallel is usually greater than that for the
moments aligned antiparallel, giving rise to a TMR effect. The spin polarized tunnelling
through nanostructured devices has been extensively studied—such as semiconductor quantum
dots (QDs) or metallic single-electron transistors. In a QD spin valve system, the QD coupled
to two FM leads, some novel transport characteristics have been identified [5–7]. For example,
it was reported that the interplay of the spin-dependent tunnelling and Coulomb interaction
gives rise to an exchange field on the QD, which leads in turn to spin precession in a biased
QD spin valve [8]. In the same system, for the antiparallel magnetization configuration, a zero-
bias anomaly in the cotunnelling transport through the QD was predicted and attributed to the
interplay of single-barrier and double-barrier spin flip cotunnelling processes rather than the
Kondo effect [9].

For an FM/FM tunnel junction, if two leads’ magnetization directions are aligned with a
noncollinear angle, an equilibrium spin current (ESC) will flow through the junction without
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any bias [10–13]. Within the linear response approximation the ESC in the noncollinear
FM/FM junction depends on the exchange coupling ML ×MR between two magnetic moments,
ML and MR . The dissipationless spin current is quite similar to the dissipationless charge
current in the Josephson junctions. The magnetization rotates spins in both FM leads and
their macroscopic phase difference drives the spin current through the magnetic junction,
while a difference in superconducting phase between two superconducting leads induces a
supercurrent through the Josephson junction. The dissipationless spin current has attracted
much attention in recent years. For instance, the intrinsic spin Hall current, which was
suggested by Sinova et al [14] for two-dimensional electron gas and by Murakami et al [15] for
p-doped semiconductor, is indeed a dissipationless pure spin current. Meier et al [16] studied
the transport of magnetization by magnons and showed that by using a finite length spin chain
between magnetic reservoirs, the pure spin current can be generated without the transport of
electron charge.

In this work we investigate the dissipationless ESC in the QD spin valves by taking the
strong Coulomb correlation into account. Particular attention is paid to the spin transport in the
Kondo regime [17–20], in which either double or empty occupation is mostly prohibited and
a localized spin forms so that the electron on the QD cannot tunnel out of it and no electron
outside of the QD can tunnel into it due to the strong Coulomb interaction. As a result, the first-
order current must be blocked. However, the leakage current could take place in the Coulomb
blockage valley by virtual higher-order cotunnelling events, e.g., the electron on the QD tunnels
out of it followed by an electron with opposite spin tunnelling from a lead into the QD. In
this cotunnelling process, the local spin is flipped. The coherent superposition of all possible
cotunnelling events gives rise to the Kondo effect, the logarithmic divergence of the leakage
current at the Fermi level [21]. The Coulomb interaction can lead to a spin flip effect for both
tunnelling electrons and localized electrons on the QD, forming an exchange field on the QD.
An interesting question is how the exchange field or the Coulomb interaction affects the ESC.
By comparatively studying the two cases in the presence and absence of Coulomb interactions
on the QD, we find that the spatial direction of the ESC stays the same and is determined only
by the exchange coupling between two noncollinear magnetizations. This indicates that the
spin symmetry on the QD is not broken by the Coulomb interaction. On the other hand, the
magnitude of the ESC decreases with increasing Coulomb interaction due to the spin flip effects
in higher-order virtual processes.

Consider a QD spin valve system consisting of a QD coupled through tunnel barriers to two
identical FM leads, with current flowing along the x direction, as shown in figure 1. The QD
with Coulomb interaction U is described by the single-level Anderson impurity model [22, 23],
and two FM leads are described by the Stoner model [24] with magnetic moments ML and
MR at an angle of θ . Taking the quantum spin axis along the direction of ML , we have
ML = M(0, 0, 1) and MR = M(sin θ, 0, cos θ). The model Hamiltonian is given by

H = HL + HR + HQD + HT L + HT R (1a)

Hα =
∑

kσ

εkασ C†
kασ Ckασ , α = L, R (1b)

HQD =
∑

σ

εdd†
σ dσ + Ud†

↑d↑d†
↓d↓, (1c)

HT α =
∑

kασ

(tkαC†
kασ dσ + c.c.). (1d)

Here Hα is the Hamiltonian of the αth FM lead with operator C†
kασ (Ckασ ) creating

(annihilating) a conduction electron with spin σ (σ = ± = ↑,↓) and εkασ denoting the
energy dispersion of spin polarized conducting electrons within the Stoner model. HQD is
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Figure 1. Schematic diagram of a QD spin valve with two noncollinear magnetizations in left and
right FM. The left and right tunnelling barrier connect them with the dot. The right FM has an angle
θ with the common spin axis z in the x–z plane.

the Hamiltonian of the QD with d†
σ (dσ ) creating (annihilating) an electron with spin σ and εd

as the single energy level. HT α describes the electron tunnelling between the QD and FM leads,
where hopping matrix element tkα is independent of spin. Due to the noncollinearity of ML and
MR , we need either to transform HR into the common σz representation or to transform HT R

into the local eigenspin space of the right FM lead. The latter is chosen here, yielding

HT R =
∑

kRσ

[
tkR

(
cos

θ

2
C†

kRσ − σ sin
θ

2
C†

kRσ̄

)
dσ + c.c.

]
, (2)

where subscript σ̄ stands for the spin opposite to σ .
We now derive the ESC formula in the QD spin valve. The total spin in the left lead is

SL = (h̄/2)
∑

kγβ C†
kLγ σ γβCkLβ where σ is the Pauli spin operator, and γ and β are spin

indices. The time evolution of SL in the Heisenberg picture is equal to ṠL = (1/ih̄)[SL , HT ];
thus the spin current in a steady state is given by

Js = −1

2

∫
dω

2π

∑

k

Tr[tkLσ G<
dk(ω) − t∗

kLσ G<
kd (ω)]. (3)

Here the trace Tr is over the spin space, G<
kd(dk) is the 2×2 lesser Green’s function in spin space

and its matrix elements are defined as G<
kβ,dγ (t, t ′) = i〈d†

γ (t ′)CkLβ(t)〉. The Fourier transform

of the Green’s function is given by G<
kd (t − t ′) = ∫

dω
2π

G<
kd (ω)e−iω(t−t ′). Since the spin current

is a tensor quantity and the current direction in our study is along the x direction in figure 1,
Js is a vector whose Cartesian components are related to three Pauli matrices. To simplify the
equation above, we employ the equation-of-motion approach of the nonequilibrium Green’s
function (Langreth theorem) [25] to decouple G<

kd(dk) as a product of the Green’s function of
the FM lead and that of the QD. In the equilibrium case under consideration, i.e., zero bias
applied on the junction, it is convenient to calculate the Green’s functions in equation (3) by
use of relation G< = (Ga − Gr) f (ω), [26] where f (ω) is the Fermi distribution function,
Gr (a) is the retarded (advanced) Green’s function and can be calculated from the usual Dyson
equation. With a little algebra, we obtain the ESC as

Js = −1

2

∫
dω

2π
f (ω)

∑

k

|tkL |2 Tr[σ (gr
L Gr

d − Gr
d gr

L + h.c.)]. (4)

Here gr
L is the retarded Green’s function of the free electron in the left FM lead and Gr

d is
that of the QD, both of them being 2 × 2 matrices in spin space. It is worthy of note that the
electrons not only near the Fermi energy but also in the full band contribute to the ESC, quite
different from the usual charge transport case. From the equation above, the off-diagonal term
of Gr

d is vital for forming the ESC in the system, since gr
L itself is diagonal in spin space,

gr
L(ω) = δσσ ′/(ω − εkLσ ). The off-diagonal term of Gr

d appears as ML and MR are not
collinear, and so a nonzero ESC can flow through the junction according to equation (4).

We proceed to derive the Green’s function of the QD, which is given by in a general form

Gr
d(ω) = 1

ωI − HQD − �r
, (5)
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where I is a unit matrix and �r is a 2 × 2 self-energy in spin space coming from both FM
leads and from strong e–e Coulomb interactions on the QD. In the absence of U , Gr

d can be
readily worked out, �r = �r

L + �r
R describing the coupling of the QD to the left and right FM

leads. As the Coulomb interaction is turned on, there is an additional self-energy contribution
from U apart from �r

L and �r
R . In order to qualitatively study the influence of U on the ESC,

we consider the dot–lead coupling to be weak enough so that HT L(R) may be regarded as a
perturbation. This permits us to derive the effective self-energy �eff by the Schrieffer–Wolff
transformation [27], which is equivalent to the effective Hamiltonian from the second-order
HT L(R) on replacing εd with energy argument ω. Within the lowest-order perturbation, the left
and right tunnelling Hamiltonians HT L and HT R contribute independently to the effective self-
energy. Following the standard procedure of transformation, we arrive at �eff from the right
dot–lead coupling as

�eff(ω) = S1(ω) + S2(ω) + S3(ω) (6a)

S1(ω) =
∑

kσ

Akσ

[
ndσ cos2 θ

2
+ ndσ̄ sin2 θ

2
− σ̄

2
sin θ(d†

σ̄ dσ + d†
σ dσ̄ )

]

−
∑

kk′σ
Akσ [C†

k′σ Ckσ + c.c.], (6b)

S2(ω) = 1
2

∑

kk′σ
{cos θ(tkR Fkσ C†

kσ dσ C†
k′ σ̄ dσ̄ − c.c.)

+ σ sin θ(tkR Fkσ C†
kσ dσ C†

k′σ dσ̄ − c.c.)} +
∑

kσ

Dkσ nσ nσ̄ , (6c)

S3(ω) = 1

2

∑

kk′σ
Dkσ

{
cos2 θ

2
C†

k′ σ̄ Ckσ d†
σ dσ̄ − sin2 θ

2
C†

k′ σ̄ Ckσ d†
σ̄ dσ + σ

2
sin θ

× (C†
k′ σ̄ Ckσ ndσ̄ − C†

k′ σ̄ Ckσ ndσ ) + c.c

}

− 1

2

∑

kk′σ
Dkσ

{(
cos2 θ

2
ndσ̄ + sin2 θ

2
ndσ

)

× (C†
k′σ Ckσ + c.c.) + σ

2
sin θ(d†

σ̄ dσ + d†
σ dσ̄ )(Ckσ C†

k′σ − C†
kσ Ck′σ − 1)

}
, (6d)

with

Akσ = |tkR |2
ω − εkσ

; Fkσ = tkR

(
1

ω + U − εkσ

− 1

ω − εkσ

)
;

Dkσ = |tkR |2
(

1

ω + U − εkσ

− 1

ω − εkσ

)
.

(7)

Here S1(ω) is the second-order self-energy modification from HT R , including decoupling terms
for both the QD and leads. S2(ω) and S3(ω) result from the Coulomb interaction and will vanish
at U = 0. S2(ω) includes the electron pair exchange terms [28] such as C†

kσ dσ C†
k′ σ̄ dσ̄ , which

are related to the double occupancy on the QD and can be disregarded in the Kondo regime
under consideration. S3(ω) represents the Kondo-type spin exchange processes between the
QD and leads.

The left tunnelling Hamiltonian HT L contributes also to the effective self-energy, and it can
be obtained from equation (6) by replacing the right lead’s parameters with those for the left
lead and by setting θ = 0 in it. Having the self-energy, the QD Green’s function in equation (5)
as well as the ESC in equation (4) can be directly worked out. We first consider the case of
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U = 0, in which neither S2(ω) nor S3(ω) makes a contribution to the self-energy, and the
contribution of S1(ω) to the dot self-energy is given by

�r
0 =

(
�r

L↑ + �r
R↑ cos2 θ

2 + �r
R↓ sin2 θ

2
1
2 (�r

R↑ − �r
R↓) sin θ

1
2 (�r

R↑ − �r
R↓) sin θ �r

L↓ + �r
R↑ sin2 θ

2 + �r
R↓ cos2 θ

2

)
. (8)

For the identical FM leads, we have �r
Lσ = �r

Rσ = ∑
k Akσ . They are approximately equal

to −i�σ/2 with �σ = 2πρσ (ω)|t|2 in the wide band approximation, where ρσ (ω) is the
spin polarized density of states in FM leads and the weak hopping element t is a constant
independent of k. In this case, we obtain the ESC as Jz = Jx = 0 and

Jy = − sin θ

4

∫
dω

2π
f (ω)(�↑ − �↓)2 Im(1/Z0), (9)

where

Z0 =
{
ω − εd + i

2

(
�↑ + �↓ − (�↑ − �↓) cos2 θ

2

)}

×
{
ω − εd + i

2

(
�↑ + �↓ + (�↑ − �↓) cos2 θ

2

)}
+ sin2 θ

2
(�↑ − �↓)2/16.

(10)

This indicates that the ESC comes from the exchange coupling between two magnetizations,
ML × MR , which is consistent with the result obtained by other methods [11, 12, 29].

In the finite U case, the Kondo-type spin exchange term S3(ω) in equation (6) contributes
also to the self-energy. In this step, we employ a mean-field approximation for the lead electron
states by using 〈C†

kασ Ck′ασ ′ 〉 = f (εkασ )δσσ ′δkk′ and 〈Ck′ασ ′ C†
kασ 〉 = (1 − f (εkασ ))δσσ ′δkk′ .

Then the resulting effective self-energy from the Coulomb interaction reads

�r
U =

(
X↓ + X↓ cos2 θ

2 + X↑ sin2 θ
2

1
2 (X↓ − X↑) sin θ

1
2 (X↓ − X↑) sin θ X↑ + X↓ sin2 θ

2 + X↑ cos2 θ
2

)
, (11)

where Xσ = − ∑
k Dkσ f (εkασ ). This self-energy induced by U represents actually the second-

order virtual process in which both conducting and localized electrons reverse their spins.
Comparing equation (11) with (8), one finds that �r

U and �r
0 have the same θ dependence.

From consideration of both �r
U and �r

0, we obtain the ESC as

Jy = − sin θ

2

∫
dω

2π
f (ω)

[
1

2
(�↑ − �↓)2 Im(1/ZU ) − (�↑ − �↓) Re[(X↑ − X↓)/ZU ]

]
, (12)

where

ZU =
[
ω − εd + i

2

(
�↑ + �↓ − (�↑ − �↓) cos2 θ

2

)
−

(
X↓ + X↓ cos2 θ

2
+ X↑ sin2 θ

2

)]

×
[
ω − εd + i

2

(
�↑ + �↓ + (�↑ − �↓) cos2 θ

2

)

−
(

X↑ + X↑ cos2 θ

2
+ X↓ sin2 θ

2

)]

−
[

i

4
sin θ(�↑ − �↓) − 1

2
sin θ(X↓ − X↑)

]2

. (13)

In the presence of U , the Jz and Jx components still vanish and Jy is proportional to sin θ . It
then follows that the Coulomb interaction does not rotate the ESC, i.e., Js ∼ ML×MR ; while its
magnitude decreases with increasing U . The latter stems from the fact that in the second-order
virtual process the appearance of nondiagonal terms in equation (11) leads to spin flip effects
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on the QD. Although there exists a spin flip on the QD, the Coulomb interaction itself does
not result in spin polarization on the QD, nor does the ESC change its direction. In reality, the
Coulomb interaction does not break spin symmetry of the QD. In the Kondo regime, the single
spin on the QD and lead spins form a spin singlet state, whereas the time-averaged spin on the
QD is zero and the QD remains unpolarized. The second term in equation (12) comes from
nonzero U , and the expression for the ESC will reduce to equation (9) in the limit of U = 0.
In the present mean-field approach, we have made the lowest-order perturbation approximation
to obtain the self-energy from both U and FM leads on an equal footing. It is expected that if
the higher-order processes of Coulomb interactions are taken into account, the direction of the
ESC will remain unchanged.

In summary we have investigated the Coulomb interaction influence on the ESC in a
quantum-dot spin valve system. In the Kondo regime, although electrons tunnel through the QD
by the higher-order virtual processes accompanied by spin flip effect, the ESC direction (spatial
spin direction rather than current direction) is given by Js ∼ ML × MR , staying unchanged
no matter whether nonzero U is present or absent. The physical origin is that the Coulomb
interaction itself does not result in the spin polarization on the QD or break its spin symmetry.
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